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Multidimensional heterogeneity and the
economic importance of risk and matching:
evidence from contractual data and field
experiments
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and
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We measure the cost of risk and the benefits of matching heterogeneous workers to risk levels
within a firm that pays its workers piece rates. The workers of this firm are heterogeneous in two
dimensions: risk preferences and ability. Our results suggest that workers’ willingness to pay to
avoid risk is heterogeneous. It can attain 40% of their expected net earnings but averages to only
1%. Moreover, the benefits to the firm of matching are relatively small: profits are predicted to
increase by only 2.3%, 4% if we restrict attention to cases where matching is possible. Although
labor-market sorting contributes to this result (the workers in this firm are relatively risk tolerant),
it is not the primary cause. More important is the relative homogeneity of risk conditions in this
firm that give rise to limited opportunities for matching.

1. Introduction

� Risk and risk preferences have played an important role in the economic analysis of contracts.
Differences in risk-bearing ability between the firm and workers have been used by theorists to
explain the form of incentive contracts (Stiglitz, 1975; Holmstrom, 1979). Empirical studies have
concentrated on measuring the importance of risk in contractual settings (e.g., Allen and Lueck,
1992; Lafontaine, 1992), often with disappointing results (Prendergast, 2000). Recent work has
stressed the importance of heterogeneous risk preferences and the sorting of workers across risk
environments (Ackerberg and Botticini, 2002; Chiappori and Salanié, 2003; Bonin et al., 2007).
Sorting reduces the cost of risk in the economy—and the measured effect of risk on contracts—
if risk-tolerant workers are attracted to risky settings.
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Yet sorting does not preclude risk as an important source of contracting costs when worker
heterogeneity is extended to multiple dimensions. In such circumstances, sorting can be based
on factors other than risk preferences.1 The cost of risk will then depend on the risk preferences
of workers and the risk levels to which they are exposed. What is more, if the firm performs
multiple tasks, or contracts across different risk settings, then matching workers to different risk
environments within the firm may be profitable.

In this article, we measure the cost of risk to workers and the derived benefits to matching
within a firm that pays its workers piece rates. We exploit payroll data and preference-revealing
experiments to identify risk exposure along with worker heterogeneity in two dimensions: risk
preferences and ability. We use our estimates to calculate the workers’ willingness to pay to avoid
risk. We also calculate how profits would increase if the firm offered a menu of contracts to the
workers, inducing matching across risk settings within the firm. Finally, we exploit our model
to identify the relative importance of labor-market sorting and risk exposure in determining the
measured cost of risk within the firm.

Our data come from a British Columbia tree-planting firm. The workers in this firm face
substantial daily earnings variation due to random planting conditions. Our payroll data contain
information on the contract (the piece rate paid to workers) and the daily productivity of the
planters (the number of trees planted) over a period of five months in 2006. Planting is performed
on blocks of contiguous terrain, and all workers on the same block receive the same piece rate.
Worker productivity depends on their effort level, but also on the soil conditions in which they
are planting. Terrain containing rocky or compact soil renders planting more difficult, slowing
the planters down and reducing their earnings. The firm adjusts the contract according to the soil
conditions on a particular block yet has incomplete information over those conditions. Planters
are therefore exposed to varying levels of planting difficulty under the same contract and, as a
result, daily income risk.

Our empirical strategy is model based. As in Ferrall and Shearer (1999), Paarsch and
Shearer (1999, 2000), and Dubois and Vukina (2009), we use the structure of an agency model
to interpret contractual data. When risk levels affect worker utility, this leads to compensating
earnings differentials (Rosen, 1986) that can be identified from the firm’s payroll data. However,
when workers are heterogeneous, these differentials identify the preferences of the marginal
worker (that worker who is indifferent across contracts) and will not identify the full cost of risk
(Rees, 1975). What is more, in contractual settings, workers are compensated for their cost of
effort in addition to risk.2 Identifying the full cost of risk therefore requires estimates of the cost
of effort as well as the complete distribution of risk preferences within the firm.

To calculate the cost of risk, we supplement our payroll data with data from a series of field
experiments conducted within the same firm. The first experiment (which we call the “piece-rate
experiment”) was completed in 2003.3 It exogenously varied the piece rate paid to workers,
identifying worker reaction to incentives (or the cost of effort). The second experiment (which
we call the “risk-preference-revealing experiment”) was conducted in 2006. It followed the
methodology developed in Holt and Laury (2002), to identify the distribution of risk preferences
of the workers who are observed in the payroll data.4 Combining identifying information in
this way allows experimental knowledge to accumulate in building empirical models (Heckman,
LaLonde and Smith, 1999). Experiments also provide verification that the structural estimates
are not overly sensitive to modelling assumptions.

1 Dohmen and Falk (2011) find that ability explained a large proportion of sorting into payment schemes in a
laboratory experiment. Lazear (2000) finds that sorting on ability explained a large proportion of the observed change in
productivity that accompanied a change in compensation systems in a firm.

2 This distinguishes empirical work on risk within the context of moral hazard from the context of adverse selection
(Cohen and Einav, 2007).

3 Data from this experiment are extensively analyzed in Paarsch and Shearer (2009).
4 An analysis of the relationship between measured risk preferences and earnings using these data has appeared in

Bellemare and Shearer (2010).
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Importantly, our model does not restrict risk preferences ex ante but allows them to be
determined empirically. Our results suggest that the marginal individual in this firm is risk
loving. The experimental evidence confirms the presence of risk-loving workers in the firm —
approximately 8% of the workers display risk preferences consistent with our estimate of the
marginal worker’s preferences. It also reveals considerable heterogeneity in risk preferences —
approximately half of workers display risk aversion, and the remaining half is either risk neutral
or risk loving.

Our results suggest that matching heterogeneous workers to risk levels can substantially
affect profits within the firm studied, particularly when risk levels vary considerably across work
sites. Under such circumstances, reallocating risk-averse workers from high-risk to low-risk
environments would increase expected profits by up to 15%. Driving this result is the fact that
the cost of risk (as measured by the difference between average earnings and certainty-equivalent
earnings) can attain 39% of expected earnings for some (risk-averse) workers on high-risk work
sites. Differences in risk levels are, however, typically limited within this particular firm, reducing
the average increase in firm profits from matching to less than 2.5%. Sorting on risk preferences
appears to be of minor importance in explaining this result. If the distribution of risk preferences
in the firm replicated that found in broader populations, the benefits to matching would increase
by less than one percentage point.

The rest of the article is organized as follows. The next section provides institutional details
of the tree-planting industry in British Columbia and discusses the payroll data. In Section 3,
we present the structural model. Identification is discussed in Section 4. Section 5 presents the
parameter estimates. In Section 6, we present the policy analysis, presenting the results on the
cost of risk and the value of matching. In Section 7, we discuss our results and conclude.

2. Institutional details

� The tree-planting firm. The data used in this article were collected from a medium-
sized, tree-planting firm throughout the 2006 tree-planting season. This firm is located in British
Columbia, Canada, and pays its planters piece rates. There is no team production in this firm —
daily earnings for a planter are determined by the product of the piece rate and the number of
trees he/she planted on that day.

Tree planting is a simple, yet physically exhausting, task. Workers are responsible for planting
seedlings on recently logged blocks of land. Planters move around the block on foot, carrying
seedlings to be planted in a sack that fits around their hips. To plant a tree, they a dig hole in
the terrain with a special shovel, place the seedling in the hole, and tamp down the earth around
the seedling. A worker’s productivity depends on his/her effort and the conditions of the terrain
being planted. Terrain that is steep or contains compact or rocky soil is more difficult to plant,
slowing the planters down.

British Columbia is a mountainous region of Canada, and planting conditions can vary a
great deal from block to block. Blocks of land to be planted typically contain between 20 and
30 planter-days of work, with some lasting over 100 planter-days. Crews of between 10 and 15
planters work under the supervision of a foreman. For each block to be planted, the firm decides
on a piece rate to be paid to the planters. The piece rate accounts for the planting conditions on
that block. Blocks that are less appealing to planters (due to their steepness, for example) require
higher piece rates to attract workers. The piece rate applies to all planting done on a block; no
systematic matching of workers to planting conditions occurs within the firm. Workers typically
meet at a central location each morning and are transported to the planting sites in trucks. Planters
are then assigned to plots of land as they disembark from the truck. Thus, to a first approximation,
planters were randomly assigned to planting conditions.

Conditions vary within blocks as well. For example, some parts of a given block may be
characterized by rocky soil under the surface, making planting more difficult. Given the firm
cannot know completely the undersoil conditions for the whole block, and given the contract

C© RAND 2013.
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TABLE 1 Descriptive Statistics of the Payroll Data

Variable Mean Standard Deviation Minimum Maximum

By Individual-Day (3709 Observations)
Number of trees 920.31 381.75 30 2780
Regular piece rate 0.23 0.05 0.14 0.35
Daily earnings 197.15 65.64 7.5 547.50

By Block (68 Observations)
Planting days 54.54 40.35 16 207
Average daily trees planted 877.27 230.16 552.14 1586.57
Piece rate 0.24 0.05 0.14 0.35
Average daily earnings 198.43 21.10 143.56 247.78
Standard deviation earnings 62.54 13.47 37.31 98.62
Standard deviation trees planted 279.90 102.09 118.36 639.58

is constant within each block, some planters will invariably end up working in more difficult
conditions, under the same contract. These random elements expose planters to daily income
risk.

The labor market in this industry is fluid. There are no unions, and the planters do not sign
employment contracts with the firm. They are free to leave the firm at any time if they are not
satisfied with the work conditions. In this setting, participation is closely approximated by a daily
decision. We will concentrate on this decision in our modelling framework.

� Payroll data. The payroll data contain information on the piece rate received by each
planter, as well as the planter’s daily productivity and earnings over a period of five months in
2006. We have restricted the data to contain days for which planters received the same piece
rate for a complete day of planting.5 This eliminates the need to aggregate trees and piece rates
under different planting conditions. Furthermore, the model we estimate in Section 4 contains
individual-specific and block-specific effects. In order to estimate these effects we, restricted our
sample to individuals and blocks with at least 15 observations on them.6

The summary statistics for these data are presented in Table 1. The top part of the table
presents descriptive statistics by planter-day observations of which there are 3709. The piece rate
received by planters ranges between $0.14 and $0.35, with an average of 0.23.7 Average daily
productivity is 920 trees planted and average earnings are equal to $197. The standard deviation
in daily earnings is large (equal to $65.64), implying substantial daily earnings variability.8 Part
of this variability is due to variation in individual ability, effort, and planting conditions across
blocks; our empirical model will take account of these factors.

Figure 1A plots the relationship between the piece rate and average natural logarithm of pro-
ductivity. The negative relationship reflects the manner in which piece rates are set: as conditions
become more difficult, slowing the planters down, the firm increases the piece rate. Piece rates
also vary depending on the time of the year. According to the firm manager, the competition for
planters varies across the planting season, affecting the piece rate that must be paid by the firm.
This is evident in Figure 1B, which plots piece rates paid during the different months of the year.
Piece rates were generally higher in the summer and fall months than in the spring.9

To consider whether or not workers of different abilities plant under different conditions,
we use average daily earnings per worker (averaged over the whole planting season) as a proxy

5 This eliminates 2497 observations from the data.
6 This step eliminates another 850 observations from our data set. Descriptive statistics including these observations

are very similar to those we report in the article and are available upon request.
7 All monetary figures are in Canadian dollars.
8 The standard deviation of earnings exceeds $90 on certain blocks.
9 A regression of the piece rate on average productivity and monthly dummy variables shows that the coefficients

on the monthly dummies are statistically significantly different from zero — the p value is equal to 0.0003.
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FIGURE 1

PIECE-RATE SETTING BEHAVIOR
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Note: Figure 1A presents the relationship between the average natural logarithm of productivity and the piece rate paid to
workers. Figure 1B presents the piece rate as a function of the month of the planting season.

for ability. In Figure 2, we plot the average ability of the planters versus the piece rates paid for
each month of planting. These graphs show no discernible relationship between piece rates and
average earnings, reinforcing the firm’s claim that they do not systematically match workers to
conditions.10

3. Model

� Technology. Daily productivity of worker i on block j is determined by worker effort, Ei j ,
and a productivity shock, Si j ,

Yi j = Ei j Si j . (2)

The productivity shock represents planting conditions such as hardness and steepness of the
ground. We assume that ln(Si j ) follows a normal distribution with mean μ j and variance σ 2

j .

10 A statistical analysis of these data can be performed by estimating the following regression for each month of
planting:

rit = β0 + β yi + εi t , (1)

where rit denotes the piece rate paid to worker i on date t and yi captures the productivity of planter i , defined as the
average earnings of the planter (averaged over the entire season). Consistent with Figure 2, we find little evidence to
suggest that the firm systematically matches workers to piece rates/conditions based on (1). The coefficient on yi is
statistically significant (at the 5% level) for only three of the seven months, and among these three significant coefficients,
two are positive and one is negative; the results of these regressions are available on request.
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FIGURE 2

EMPLOYEE ABILITY AS A FUNCTION OF THE PIECE RATES FROM MARCH TO SEPTEMBER 2006
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Note: Employee ability is given by the daily earnings of each planter averaged over the entire 2006 season.

Workers are paid piece rates; their daily earnings, Wi j , are strictly proportional to the number
of trees planted; that is Wi j = r j Yi j , where r j denotes the piece rate paid to all workers planting
on block j .

� Utility. Workers are assumed to have constant absolute risk aversion (CARA)11 utility
functions defined over earnings on block j , Wi j , and effort, Ei j ,

U (Wi j , Ei j ) =
⎧⎨
⎩

1

δi

[Wi j − C(Ei j )]
δi if Wi j > C(Ei j );

−∞ otherwise,
(3)

where C(Ei j ) = κi

η
Eη

i j denotes individual i’s cost of effort. Here, κi allows for individual-specific
ability in tree planting and η measures the curvature of the function. The parameter δi denotes the
risk-preference parameter of worker i . An advantage of this specification is that it separates the
characterization of risk preferences from the marginal return to effort. Consequently, an optimal
effort solution exists under a general characterization of risk preferences.12

11 Additive shocks and CARA preferences present an alternative structure within which to analzse risk preferences
and contracts. See, for example, Dubois and Vukina (2009). Developing statistical tools to test between models with
additive and multiplicative shocks is an important area of future research for agency models.

12 The major disadvantage in using CARA utility is the presence of wealth effects. Wealth does not affect effort
decisions in this context because utility is separable. It does, however, affect expected utility and hence, potentially, the
setting of piece rates. In what follows, we assume wealth to be zero. Given tree planters are typically seasonal workers
and/or students with limited outside assets, this seems a reasonable assumption.
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� Timing. For a given block, j, to be planted:

(i) nature chooses (μ j , σ
2
j );

(ii) the firm observes (μ j , σ
2
j ) and chooses the piece rate r j ;

(iii) the worker observes (μ j , σ
2
j , r j ) and accepts or rejects the contract13;

(iv) conditional on accepting the contract, the worker draws a value si j from the distribution of
Si j and chooses an effort level, producing Yi j ; and

(v) The firm observes Yi j and pays earnings Wi j .

Workers in this environment are randomly allocated to plant trees on a particular plot of
block j — they draw a value of Si j .14 They then begin to plant trees by digging holes in the
ground, revealing how difficult the terrain is for planting. Workers can then adjust their effort
levels to those conditions. In this context, it seems reasonable to assume that workers observe a
draw si j from the distribution of Si j before selecting an effort level.15

� Effort choice and output. Conditional on si j , the worker selects effort to maximize utility.
It follows that optimal effort is given by16

ei j =
[

r j si j

κi

]γ

, (4)

where

γ ≡ 1

η − 1
.

Substituting from (4) into (2) and taking logarithms gives

ln(Yi j ) = γ ln(r j ) − γ ln(κi ) + (γ + 1) ln(si j ), (5)

where, by random sampling, ln(si j ) ∼ N (μ j , σ
2
j ).

The optimal effort level is independent of risk preferences. This is due to the fact that
workers observe a realization of Si j before selecting their effort level; there is no risk once Si j

is determined.17 Note, however, that equilibrium effort will still be affected by risk through the
participation constraint and the determination of r j (see below).

The second-order sufficient conditions for optimal effort are satisfied independently of the
risk attitudes of workers, suggesting that these preferences are general enough to capture different
risk attitudes among workers. In particular, the second derivative of utility with respect to effort
is given by

∂2U

∂ E2
i j

= (δi − 1)

[
r j Ei j si j − κi

γ

γ + 1
E

γ+1
γ

i j

](δi −2)(
r j si j − κi E

1
γ

i j

)2

−
[

r j Ei j si j − κi

γ

γ + 1
E

γ+1
γ

i j

](δi −1)
κi

γ
E

(1−γ )
γ

i j . (6)

13 Assuming that the firm and workers observe (μ j , σ
2
j ) abstracts from sampling error and the credible conveyance

of information to workers.
14 Recall, from Section 2, the firm does not match workers to conditions.
15 We also assume that workers receive one shock per day. This implies that planting conditions are identical on all

parts of the block that they plant.
16 Given our specification, utility is defined for Ei j ∈

(
0,

(
r j si j

κi

)γ (
γ+1
γ

)γ )
.

17 Two conditions must be satisfied for risk preferences to affect effort: (i) effort must be chosen before uncertainty
is revealed and (ii) the shock must affect the marginal productivity of effort. Models with additive shocks (as in most
textbook presentations of the agency relationship) will not generate effort as a function of risk preferences.
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Evaluating (6) at optimal effort, (4), gives

−
[

r γ+1
j sγ+1

i j

κ
γ

i (γ + 1)

]δi −1[ 1

γ
r 1−γ

j s1−γ

i j κ
γ

i

]
< 0 if κi > 0, γ > 0.

� Indirect utility and contracts. Substituting from (4) into (3), and using the properties of
the log-normal distribution, gives the expected indirect utility of planting on a given block j for
individual i ,

Vi j = 1

δi

r δi (γ+1)
j

(γ + 1)δi κ
δi γ

i

exp(γ+1)δi μ j +0.5(γ+1)2δ2
i σ 2

j (7)

= 1

δi

1

(γ + 1)δi
[E(Wi j )]

δi exp0.5δi (γ+1)2σ 2
j (δi −1), (8)

where18

E(Wi j ) = r (γ+1)
j exp(γ+1)μ j +0.5(γ+1)2σ 2

j

kγ

i

. (9)

The contract must satisfy the expected utility of each planter observed working in the
firm. Yet, with only one instrument in the contract and heterogeneous workers, the participation
constraint of each worker cannot be satisfied with equality; some workers earn rents. The firm
could, in principle, capture some of these rents by offering a menu of piece rates to workers. In
accordance with the practices of the firm, we do not analyze the possibility of offering more than
one piece rate on a given block.

Define the marginal worker, h, as that worker who is indifferent between working and staying
home. Then, from (7),

Vhj = 1

δh

r δh (γ+1)
j

(γ + 1)δh κ
γδh
h

exp
{
(γ + 1)δhμ j + 0.5(γ + 1)2δ2

hσ
2
j

} = 1

δh

w̄δh (10)

or

(γ + 1)μ j = ln(w̄) − (γ + 1) ln(r j ) + γ ln(κh) + ln(γ + 1) − 0.5(γ + 1)2δhσ
2
j , (11)

where w̄ is the net market alternative.19 Hence, we assume that the firm chooses r j on each block
such that (10) is satisfied — the marginal worker is constant across contracts. As a result, the
piece rate accounts for the net alternative, the risk exposure of workers, as well as the disutility
of effort and the risk tolerance of the marginal worker.

Given the firm’s choice of r j , the equilibrium expected earnings E(W 

i j ) for worker i on

contract j can be obtained by substituting r γ+1
j from (10) into (9), resulting in

E(W 


i j ) = γ ω̄

(
κh

κi

)γ

exp{0.5(γ+1)2σ 2(1−δh )}. +ω̄

(
κh

κi

)γ

exp{0.5(γ+1)2σ 2(1−δh )}

= E
[
C(ei j )

] + ω̄

(
κh

κi

)γ

exp{0.5(γ+1)2σ 2(1−δh )} . (12)

18 Equation (8) demonstrates how compensating differentials arise in the model. For example, risk-averse workers
(for whom δi < 1) must be compensated with higher expected earnings in order to offset reductions in utility due to
increased risk exposure.

19 More than one worker can be indifferent to any contract. Under these circumstances, there is a marginal group
of workers, and the analysis assumes that the piece-rate setting behavior is stable; that is, the piece rate is set on the basis
of the preferences of the same individual within the marginal group.
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The first part of (12) represents earnings paid to compensate workers for their expected
(optimal) effort costs.20 The second term in (12) represents equilibrium compensation for the
marginal worker’s cost of risk, prorated to individual i’s ability.21

Notice that if the marginal worker does not care about risk, then expected earnings collapses
to

E(W 


i j ) = (γ + 1)ω̄

(
κh

κi

)γ

,

which is constant across contracts (and independent of risk). This provides a direct test of whether
risk determines contracts. Recall that workers receive daily shocks to productivity and earnings.
One possible scenario in these circumstances is that shocks average out over time and only average
earnings matter. Our empirical model nests this scenario as a special case: when δh = 1.

� The cost of risk. Hedonic wage equations use earnings regressions to measure the cost
of risk (Thaler and Rosen, 1976). As individuals must be induced to take risks through higher
earnings, the difference in average earnings across risk settings is the amount the individual is
willing to pay to eliminate that risk. Yet, in the presence of heterogeneous preferences, earnings
adjust to compensate the marginal worker for his/her differences in expected utility (Rees, 1975).
Also, because effort costs change across contracts along with risk, the observed differential
compensates for both changes in effort costs and risk. Calculating the cost of risk in this setting
therefore requires measuring the earnings that are required to compensate for risk, holding effort
constant.

To measure the cost of risk to workers on a given contract, we calculate the amount a worker
is prepared to pay to eliminate risk on that contract, holding expected effort costs constant at
optimal levels. We define W i j to be worker i’s certainty equivalent income on block j . Then,
W i j provides the worker with the same level of expected utility as he/she gains from working on
plot j under uncertainty, holding expected effort costs constant at the level implied by optimal
behavior. From (7), W i j solves

1

δi

[
W i j − E[C(ei j )]

]δi = 1

δi

[
r (γ+1)

j

(γ + 1)κγ

i

exp(γ+1)μ j +0.5(γ+1)2δi σ
2
j

]δi

. (13)

Substituting r γ+1
j from (10) gives

W i j = ω̄

(
κh

κi

)γ

exp0.5(γ+1)2σ 2
j (δi −δh ) + E[C(ei j )]. (14)

The cost of risk cri j for individual i on block j is therefore obtained by subtracting (14)
from the equilibrium expected earnings (12), giving

cri j = ω̄

(
κh

κi

)γ [
exp0.5(γ+1)2σ 2

j (1−δh ) − exp0.5(γ+1)2σ 2
j (δi −δh )

]
. (15)

Inspection of (15) reveals the following. First, as expected, the cost of risk is zero in the
absence of risk (σ 2 = 0). Second, the cost of risk is increasing (decreasing) in σ 2 if individual

20 The compensation for effort costs can be derived by substituting r γ+1
j from (10) in the cost of effort function C(·)

evaluated at the optimal effort level given in (4).
21 To see this, notice that for the marginal individual, the second term is equal to

ω̄ exp{0.5(γ+1)2s2(1−δh )}, (16)

evaluated at s2 = σ 2
j , the variance on block j . The difference between (16) evaluated at s2 = σ 2

j and at s2 = 0 (in the
absence of risk) represents the cost of risk to the marginal worker on block j (see (15)).
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i is risk averse (loving).22 Third, the cost of risk is proportional to planting ability, given risk
preferences. This is due to the fact that the moments of the earnings distribution depend on ability
(relative to the marginal worker).23

It follows from (15) that measuring the cost of risk for individual i on block j requires
estimates of

ω̄

[
κh

κi

]γ

, (γ + 1)2σ 2
j , δh, and δi .

In Section 4, we show that by applying our model to payroll data, we can identify

(γ + 1)ω̄

[
κh

κi

]γ

, (γ + 1)2σ 2
j , and δh.

Estimating the cost of risk requires separately identifying γ and δi . To accomplish this, we
supplement our payroll data with two field experiments: one to identify γ , which we call the
“piece-rate experiment” (discussed in Section 4), and another to identify δi , which we call the
“risk-preference-revealing” experiment (discussed in Section 4). Each experiment was conducted
within the same firm; we discuss each source of identification in turn, beginning with the payroll
data.

4. Identification and estimation

� Identifying (γ + 1)ω̄
[

κh

κi

]γ

, (γ + 1)2σ 2
j , and δh: payroll data. To estimate the model,

we allow for alternative utility, ω̄, to vary across months to capture seasonal changes in the
piece-rate setting behavior of the firm, as shown in Figure 1. Substituting from (11) into (5) gives
the logarithm of worker i’s productivity on block j at month t as

ln(Yi jt ) = ln ω̄t + ln(γ + 1) + γ (ln κh − ln κi ) − ln r j − 0.5δh(γ + 1)2σ 2
j + εi j t , (17)

where εi j t ∼ N
(
0, (γ + 1)2σ 2

j

)
. Note, (17) is the equilibrium hedonic wage equation, re-

gressing (the logarithm of) earnings on risk. The structure of the model serves to identify risk.
To discuss identification of δh , let E(ln(Yimt )) and V(ln(Yimt )) denote, respectively, the ex-

pectation and the variance of the logarithm of productivity conditional on worker i planting on
block m at time t . It then follows from (17) and the assumptions on εi j t that, for any two blocks j
and k such that V(ln(Yi jt )) �= V(ln(Yikt )),

δh = [E(ln(Yi jt )) − E(ln(Yikt ))] − [ln(rk) − ln(r j )]

0.5[V(ln(Yikt )) − V(ln(Yi jt ))]
. (18)

Risk preferences generate an earnings differential to the marginal worker to compensate for
risk. Hence, the risk-aversion parameter of the marginal worker is identified from the ratio of
the difference in expected log earnings to the difference in the variance across blocks in a given
month.

22 Taking the derivative of the cost of risk with respect to σ 2 and rearranging gives

∂cri j

∂σ 2
= 0.5ω̄

( κh

κi

)γ

(γ + 1)2 exp0.5(γ+1)2σ 2
j (1−δh )

[
(1 − δh) − (δi − δh) exp0.5(γ+1)2σ 2

j (δi −1)
]
,

the sign of which depends on the sign of [(1 − δh) − (δi − δh) exp0.5(γ+1)2σ 2
j (δi −1)], which is positive when δi < 1, zero

when δi = 1, and negative when δi > 1.
23 Ability affects effort, the reaction to productivity shocks, and hence the variance of earnings. Recall, the contract

(piece rate) is set to satisfy the marginal worker’s participation constraint. As such, it takes account of his/her reaction to
shocks, but not the reactions of the other workers.
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Although equation (18) makes transparent the conditions for identification of δh , it is not
convenient for estimation of that parameter. To estimate δh , we first rewrite (17) as

ln(Yi jt ) + ln(r j ) = a0 +
I∑

i �=1

a1i DIi +
T∑

t �=1

a2t DMt − δh

J∑
j �=1

a3 j DBj + εi j t, (19)

where εi j t ∼ N (0, σ̃ 2
j ), DIi indicates individual i , DMt indicates month t , and DBj indicates

block j , and where we define

(i) a0 = ln((γ + 1)ω̄1[ κh

κ1
]γ );

(ii) a1i = ln([ κ1
κi

]γ );

(iii) a2t = ln( w̄t

w̄1
);

(iv) a3 j = 0.5σ̃ 2
j and

(v) σ̃ 2
j = (γ + 1)2σ 2

j .

Here, κ1 is the normalized individual in the sample and ω̄1 is the alternative in the first month
of the sample. We estimate the parameters {a0, a12, . . . , a3J , σ̃

2
2 , . . . , σ̃ 2

J , δh} of equation (19) by
maximum likelihood.24

The econometric model above reveals that (γ + 1)ω̄t [
κh

κi
]γ is identified by combining esti-

mates of a0, a1i , and a2t . Furthermore, the estimate of σ̃ 2
j directly identifies (γ + 1)2σ 2

j . Finally,
estimates of σ̃ 2 and a3 j identify δh . Notice, however, that these risk preferences are identified
without knowledge of who the marginal worker is. This is important in models with heterogene-
ity in multiple directions because it is not generally possible to identify the marginal worker ex
ante.25 This is due to the fact that the average productivity of the marginal worker can be higher
or lower than that of any other worker.

� Identifying γ and risk preferences: experimental data. Identifying γ and the full distri-
bution of risk preferences δi requires that we supplement our payroll data with information from
other sources. We use experiments, conducted within the same firm, to identify γ and the δi s. We
then extrapolate the results from these experiments to our payroll data.

� The piece-rate experiment. The piece-rate experiment took place on three separate blocks,
over a three-month period in 2003.26 During the experiment, each homogeneous block was divided
into two parts. One of these parts was then randomly chosen to be planted under the regular piece
rate, and the other to be planted under the treatment piece rate (equal to the regular piece rate plus
five cents). The regular piece rates paid on these blocks were 18 cents and 23 cents, respectively.
The treatment piece rates therefore represented an increase of between 21% and 27% percent
above the regular piece rate; 21 planters participated in the piece-rate experiment.

To avoid any Hawthorne effects,27 the experimental changes were presented to the workers
within the context of the normal daily operations of the firm. To this effect, the firm presented
the treatment and control blocks as separate blocks, with separate piece rates.28

24 To proceed, note that our distributional assumptions imply that the contribution to the likelihood of individual i
planting on block j is given by

li j t = 1√
2πσ̃ j

exp
{

− ε2
i j t

2σ̃ 2
j

}
,

where εi j t is defined in (19).
25 This contrasts to models in which heterogeneity operates only along one dimension; see Paarsch and Shearer

(1999).
26 Data from this experiment were first analyzed in Paarsch and Shearer (2009). The maintained assumption of our

model is that γ does not vary across time and individuals. This allows us to estimate γ using data from 2003.
27 Hawthorne effects occur when experimental participants know that they are participating in an experiment and

alter their behavior as a consequence.
28 A convincing explanation for the difference in piece rates was prepared invoking the fact that conditions on the

treatment blocks had changed since the original bidding. This sometimes happens when the block has been unexpectedly
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Let r T and rC denote the treatment and control piece rates, respectively. Then, from (5),

ln
(
Y T

i j

) = γ ln
(
r T

j

) − γ ln(κi ) + (γ + 1) ln(Si j ) (20a)

ln
(
Y C

i j

) = γ ln
(
rC

j

) − γ ln(κi ) + (γ + 1) ln(Si j ). (20b)

Let J pr denote the number of blocks in the piece-rate experiment, and I pr the number of planters.
Furthermore, define {Dbj : j = 1, 2, . . . , J pr } as dummy variables taking a value of 1 for block
j , and 0 otherwise. Similarly, define {DIi : i = 1, 2, . . . , I pr } as dummy variables taking a value
of 1 for planter i , and 0 otherwise. Then, combining (20a) and (20b) gives

ln(Yi j ) = a0 +
I pr∑
i=2

a1i DIi +
J pr∑
j=2

a2 j Db j + γ
(
ln

(
r T

j

) − ln
(
rC

j

))
DTi j + εi j, (21)

where

a0 = −γ ln(κ1) + γ ln
(
rC

1

) + (γ + 1)E (ln(Si1))

a1i = γ (ln(κ1) − ln(κi ))

a2 j = (γ + 1)[E(ln(Si j )) − E(ln(Si1))] + γ
(

ln
(
rC

j

) − ln
(
rC

1

))
εi j = (γ + 1)[ln(Si j ) − E(ln(Si j ))]

and

DTi j =
{

1 if paid treatment piece rate on block j ,

0 if paid control piece rate on block j .

The exogenous variation in the piece rate implies that the expected value of εi j is equal to
zero, conditional on the included regressors. Hence, the model in (21) identifies γ .29

� The risk-preference-revealing experiment. The risk-preference-revealing experiment
took place in May 2006, inspired by the experimental design exploited by Holt and Laury
(2002) to determine the risk preferences of an individual.30 During the experiment, workers were
asked to make 10 decisions. Each decision consisted of choosing one of two binary lotteries.
A summary of the decisions can be found in Table 3. The actual decision sheet is presented in
Appendix A. For each decision there is a “safe” lottery, denoted A, which pays either a low payoff
of $16.00 or a high payoff of $40.00, and a “risky” lottery, denoted B, which pays either a low
payoff of $2.00 or a high payoff of $77.00. Which of the high or low payoffs materialized was
determined by chance.

For the first decision, the probability of the high payoff for both lotteries is 10%, so only an
extreme risk seeker would choose lottery B. As can be seen in the far right column of Table 3,
the expected payoff difference between lotteries A and B, for the first decision, is $23.40. The
probability of winning the high payoff increases gradually as we move down the table, increasing
the relative payoff of the risky lottery B. Consequently, an individual should eventually cross over
and start choosing lottery B as he/she moves down the decision sheet. In fact, for the last decision,

prepared (cleared of debris) by the government. In practice, no explanation was needed, as none of the planters questioned
the higher piece rates.

29 In principle, the experimental data could also be fit to the structural model developed in Section 4. We chose not
to in an effort to identify our parameters with minimum assumptions.

30 May is typically the busiest period for the firm. Its workforce during this period is typically made up of both
students, working for summer jobs, and career planters (who typically plant throughout the whole season). Consequently,
there is no reason to believe that our sample is more homogeneous, in terms of risk preferences, than it would be at
another period of the season.
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TABLE 2 Summary Statistics: Piece-Rate Experiment

Variable Average Standard Deviation Gift Minimum Maximum

Control Sample: 109 Observations
Number of trees 888.85 325.46 390 1765
Piece rate 0.21 0.03 0.18 0.23
Daily earnings 182.65 50.40 89.70 317.70

Treatment Sample: 88 Observations
Number of trees 1012.39 351.23 375 1965
Piece rate 0.26 0.02 0.23 0.28
Daily earnings 254.56 68.98 105.00 451.95

TABLE 3 High Payoff Scale Matrix of the Lottery Experiment

Decision Lottery A Lottery B Expected Payoff Difference

1 1/10 of $40.00, 9/10 of $32.00 1/10 of $77.00, 9/10 of $2.00 $23.40
2 2/10 of $40.00, 8/10 of $32.00 2/10 of $77.00, 8/10 of $2.00 $16.60
3 3/10 of $40.00, 7/10 of $32.00 3/10 of $77.00, 7/10 of $2.00 $10.00
4 4/10 of $40.00, 6/10 of $32.00 4/10 of $77.00, 6/10 of $2.00 $3.20
5 5/10 of $40.00, 5/10 of $32.00 5/10 of $77.00, 5/10 of $2.00 − $3.60
6 6/10 of $40.00, 4/10 of $32.00 6/10 of $77.00, 4/10 of $2.00 − $10.20
7 7/10 of $40.00, 3/10 of $32.00 7/10 of $77.00, 3/10 of $2.00 − $17.00
8 8/10 of $40.00, 2/10 of $32.00 8/10 of $77.00, 2/10 of $2.00 − $23.60
9 9/10 of $40.00, 1/10 of $32.00 9/10 of $77.00, 1/10 of $2.00 − $30.40

10 10/10 of $40.00 10/10 of $77.00 − $37.00

the high payoff of each lottery is paid with probability 1 ($40 for lottery A, and $77.00 for lottery
B). This means that even very risk-averse individuals should choose lottery B in the last decision.

The pattern of decisions for a given planter can be related to risk preferences for a utility
function with constant relative risk aversion for money δ. The payoffs for the lottery choices in
the experiment are such that the crossover point from lottery A to lottery B provides an interval
estimate of a subject’s coefficient of relative risk aversion. The payoff numbers for the lotteries
are such that a risk-neutral decision pattern (four safe choices followed by six risky choices) is
consistent with a constant relative risk-aversion coefficient δi in the interval (0.85, 1.14).

After we described the decisions they would be making, planters were informed that, once
their decisions were made, one of their 10 decisions would be randomly chosen and played out to
determine their earnings. To select which of the 10 lotteries would be played, each planter would
first draw a poker chip from an opaque black bag containing identical chips numbered from 1 to
10. The number drawn would select the lottery to be played. We would then replace the chip in
the bag, shuffle the bag, and ask the planter to draw a chip for a second time to determine the
outcome of the selected lottery and the planter’s lottery earnings.31

Extrapolation. Our approach to identification combines estimates from different experiments to
estimate parameters otherwise not identified from the economic model and the payroll data.
We have done so within the context of a very simple economic model that assumes parameters
are constant across time, settings, and in some cases individuals. This allows us to apply the
estimated values of γ and δ from separate field experiments directly to the payroll data, which
enables us to perform the counterfactual welfare calculations of the cost of risk and the benefits of

31 For example, a planter who selected the number 4 on his first draw would play lottery A.4 if he had selected
lottery A for decision 4 and B.4 if he had selected lottery B. If his second draw was in the interval 1–4, he would win $40
if he had selected lottery A and $77.00 if he had selected lottery B. If his second draw was in the interval 5–10, he would
win $32 if he had selected lottery A and $2 if he had selected lottery B. Bellemare and Shearer (2010) provide a further
discussion of this experiment.
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matching. These are admittedly strong simplifying assumptions that merit scrutiny on the part of
the reader.32 Relaxing them may lead to improved models of worker behavior that generalize more
accurately across experimental environments. Nevertheless, our view is that the results based on
these simplifying assumptions are of interest and deserve attention.

One immediate concern is that γ may be individual specific. If so, and if the sample of
workers has changed between the different settings, then the value of γ that was estimated in the
piece-rate experiment may not apply to the workers in the payroll data. Mitigating these concerns
is the fact that one third of the workers who participated in the piece-rate experiment are present
in the payroll data. Moreover, the composition of the workforce is similar in the two settings. The
average age was 34 in the piece-rate experiment and 33 in the payroll data, whereas the proportion
of males was .80 in the piece-rate experiment and .67 in the payroll data. This suggests that the
average response to incentives obtained in the piece-rate experiment can serve as a reasonable
approximation to the response in 2006.33

Similar issues arise with respect to the risk preferences. We assume that the risk preferences
identified from the lottery experiment apply to the daily work decisions of these workers. Although
we do not claim to have perfectly calibrated the earnings or risk levels between the lottery and
the payroll data, we note that the lottery represents considerable earnings for the workers, who
earn on average $200 per day.34 We also note that our previous research (Bellemare and Shearer,
2010) shows that the distribution of risk preferences among these workers is not sensitive to scale
effects (changes in the amount of money available from the lottery). Finally, we note that the
difference in earnings between the high and low payouts in the risky lottery is $75.00, just larger
than the standard deviation of daily earnings in the payroll day as reported in Table 1 ($66.00).
This suggests that the the risk lottery offers a realistic representation of the daily variation in
earnings faced by these workers. Given these facts, we feel that the preferences measured in the
lottery are a reasonable approximation to the risk preferences of workers.

5. Results

� Parameter estimates from payroll data. The risk-preference coefficient δh is estimated
to be 2.73 and the estimated standard error is 0.403, giving a p value (for the hypothesis
Ho : δh = 0) essentially equal to zero.35 The estimated values of σ̃ 2

j range between 0.02 and 0.34
with an average of 0.08.36 This suggests that the marginal worker is risk loving; for a given set of
average conditions, the marginal worker prefers contracts on which the variance is high.

To consider the fit of the model, we calculated 95% and 99% confidence intervals for
the average logarithm of predicted daily productivity on each contract. The observed average
productivity lies within the 95% confidence interval for 13 of the 22 contracts (59%) and within
the 99% confidence interval for 15 of the 22 contracts (68%). The 99% intervals are shown in
Figure 3 as the solid lines. The average observed logarithm of productivity on each contract
is given by the dashed line connecting the dots. The graphs suggest that the model captures
the general features of the data very well, replicating the negative correlation between average
productivity and the piece rate.

32 Given the nonlinearities involved in calculating the benefits to matching, it is not possible to sign analytically the
bias that may result from the violation of these assumptions.

33 It is worth noting that a common value of γ does not restrict the effort response to incentives to be the same
across workers. This is because our costs of effort function depends on κi , which varies across planters. It does, however,
restrict the elasticity of effort with respect to the piece rate to be constant.

34 Expected earnings from the lottery depend on the choices the participant makes. However, the participant can
guarantee themselves $32.00 by selecting the low-risk lottery at each alternative. Given participation took 20–30 minutes
of their time, this represents considerably more than they could expect to make in in a similar amount of time planting
trees.

35 A test of the hypothesis that δh = 1, implying that risk has no effect on contracts, is also rejected at all standard
significance levels.

36 A full table of results is available from the authors on request.
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FIGURE 3
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using only the payroll data.

� The piece-rate experiment. Table 2 presents the summary statistics of the piece-rate
experiment averaged over all planters in both treatment and control conditions. The average daily
number of trees planted under the control conditions is 888.95, with a relatively high standard
deviation. Under the treatment conditions, the average number of trees planted climbs to 1012.39.
This reflects a 13.9% increase in planter productivity relative to the control conditions, a change
consistent with the higher piece rates paid in the treatment conditions.

The estimate of γ from (21) is equal to 0.39. A statistical test of the null hypothesis that γ is
equal to zero is rejected at all levels of statistical significance — the p value is essentially equal
to zero.

� The risk-preference-revealing experiment. The results of the risk-preference-revealing
experiment are presented in Table 4 under the heading “high payoff scale.” Along with the range of
the estimated risk-preference parameter, based on the number of safe choices made by the worker,
we present the cumulative distribution of individuals by category. Some (13) individuals provided
inconsistent answers during the experiment.37 The second column under the heading “high payoff
scale” gives results, excluding inconsistencies. Overall, we find substantial heterogeneity in risk
preferences. Close to one fourth of all workers made decisions revealing risk-loving behavior
(three safe choices or fewer), and a little more than half of the workers made decisions revealing
various degrees of risk aversion (five or more safe choices).

We note that 7%–8% of the workers in this firm display risk preferences that are consistent
with our estimate of δh (the risk preferences of the marginal worker) obtained from applying our

37 We eliminated these individuals from the sample.
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TABLE 4 Risk-Preference-Revealing Experiment Results

Tree-Planting Firm Population

High Payoff Scale Low Payoff Scale High Payoff Scale

Number of safe choices s U = x δ All Consistent All Consistent All Consistent

0–1 δi > 1.95 0.085 0.109 0.098 0.142 0.016 0.017
2 1.49 < δi < 1.95 0.102 0.130 0.117 0.171 0.021 0.019
3 1.14 < δi < 1.49 0.237 0.261 0.235 0.257 0.059 0.053
4 0.854 < δi < 1.14 0.458 0.478 0.392 0.457 0.167 0.157
5 0.589 < δi < 0.854 0.763 0.739 0.726 0.800 0.295 0.271
6 0.324 < δi < 0.589 0.864 0.870 0.902 0.886 0.527 0.496
7 0.029 < δi < 0.324 0.915 0.913 0.941 0.914 0.738 0.722
8 −0.368 < δi < 0.029 0.966 0.957 0.941 0.914 0.857 0.841
9–10 δi < −0.368 1 1 1 1 1 1
Sample size 59 46 51 35 881 806

Note: The first column presents the number of safe choices made in the experiment. The second column
presents the interval around the coefficient of relative risk aversion δi that is consistent with a given number of safe
choices. The table reports distributions for the high- and low-stakes treatments conducted in the firm. The last two
columns present the cumulative distribution estimated by Dave, Eckel, Johnson, and Rojas (2010) for the entire pop-
ulation. “All” refers to the entire sample in each treatment. “Consistent” refers to the subsamples of subjects in each
treatment who made consistent answers.

structural model to the payroll data. Although it is impossible to identify who the marginal worker
is from the experimental data, this consistency is encouraging; it provides a certain degree of
independent validation of the structural results and suggests that they are not overly sensitive to
our modelling assumptions.

An important issue when eliciting risk preferences is whether the measured distribution of
preferences is sensitive to the payoff scale of the lotteries used (see Holt and Laury, 2002). To
assess the importance of scaling, we compare the results of the current experiment with those of
a similar experiment conducted one year earlier (in 2005), in the same firm. The experiment in
the preceding year was identical to the current experiment except that the lottery payoffs were
one half of those used in the current experiment.38 Fifty-one workers participated in the previous
experiment. The payoff scale should not affect the distribution of measured risk preferences,
conditional on preferences being of the CARA type. Results for all workers and only those who
gave consistent answers are reported in the second two columns of Table 4 under the heading
“low payoff scale.” We find that the distribution of risk preferences is broadly similar to the
high payoff scale experiment.39 In particular, the proportion of risk-loving workers remains above
20%, whereas close to half of the workers reveal being risk averse. These results suggest that the
measured distribution of risk preferences is relatively robust to the (local) rescaling of the payoffs
in the experiment.40 It is also of interest to compare the risk preferences of these workers to
those of individuals sampled from a broader population. The final column presents the results of
Dave, Eckel, Johnson, and Rojas (2010), who conducted risk-preference-revealing experiments
on individuals sampled from across Canada, with payoffs corresponding to our high payoff
scale experiment. They found a much lower proportion of individuals displaying risk-neutral
or risk-loving preferences. These results are consistent with the hypothesis that workers match
to firms on the basis of their risk preferences:risk-tolerant workers are attracted to high-risk
occupations.

38 Lottery A paid either $20 or $16, whereas lottery B paid either $38.50 or $1.
39 Invariance to rescaling is generally inconsistent with CARA preferences, which predict increased aversion to risk

as stakes are increased (Holt and Laury, 2002).
40 Although larger changes may bring about changes in preferences over risk, we feel that the scales considered are

relevant for investigating behavior in tree planting, where workers typically earn approximately $200 per day.
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6. Policy analysis

� The importance of risk to workers. To measure the cost of risk for the workers in this firm,
we evaluated (15) at the estimated parameter values for the highest- and lowest-variance block
during the May 2006 planting season. The corresponding estimated values of σ̃ 2

j = (γ + 1)2σ 2
j

were 0.257 and 0.017, respectively. The results are presented in Figure 4. The average cost of
risk on the high-variance block (top left graph) is equal to $1.26 and the standard deviation
is 17.35. There is considerable heterogeneity, with values ranging from −$38.73 to $72.56,
reflecting heterogeneity in planting abilities and risk preferences. Yet the majority of values are
concentrated around the mean: the interquartile range of the cost of risk (−5.05,6.1). The costs of
risk as a proportion of expected earnings on the high-variance block reveal a similar heterogeneity
(top right graph): the proportions vary from −15% to 40%, with an average proportion of 1.1%.
Unsurprisingly, there is a very small variance in the costs of risks across planters on the low-risk
block (bottom left graph), with an average close to zero. As a result, the costs as a proportion of
expected earnings are negligible (bottom right graph).

� The benefits of matching. The heterogeneity in risk preferences suggests that there are
potential gains to the firm from matching workers to contracts based on risk conditions and
preferences. In this section, we analyze these benefits. We first present our formal analysis within
the context of two available contracts. Extending to multiple contracts (which we do to compute
the gains) is straightforward.

Measuring the benefits to matching is complicated by the fact that observed contracts vary
in both μ j and σ 2

j . To isolate the potential benefits accruing from differences in risk and risk
preferences, we consider the change in profits that the firm could earn from matching across
contracts that differ only in the risk parameter σ 2.41 To do so, we use our model to generate
contracts that differ in risk, holding μ constant at μ0. From (10),

r (γ+1)
j exp(0.5(γ+1)2δhσ 2

j ) = ω̄κ
γ

h (γ + 1) exp−(γ+1)μ j ≡ μ̃ j . (22)

We set μ̃0 at the level of μ̃ j on the low-variance contract in the data (for which r j = 0.35 and
(γ + 1)2σ 2

j = 0.018). This gives a value of μ̃0 = 0.24. We then use (22) to generate piece rates
r̂ j that are consistent with the estimated variances and μ̃0; that is,

r̂ (γ+1)
j = exp−(0.5(γ+1)2δhσ 2

j ) μ̃0. (23)

The generated contracts for the month of May 2006 are given in Table 5. The table also shows
the value of the risk parameter, σ 2

j , and the original contract, r j . We show in Appendix B that
the choice of blocks from which to calculate μ̃0 is immaterial to our results. Whereas it will alter
the value of μ̃0 and the generated piece rates, matching profits and worker expected utility are
unaffected.

To study the benefits of matching, we first consider how worker utility would change on
block j if the piece rate paid on that block were changed from r̂ j to r̃ j , holding conditions constant
at μ0, σ

2
j . From (7), worker i’s indirect utility from planting on plot j at the piece rate r̃ j is given

by

Vi, j (r̃ j ; r̂ j , μ̃0, σ
2
j ) = 1

δi

r̃ δi (γ+1)
j

(γ + 1)δi κ
δi γ

i

exp(γ+1)δi μ0+0.5(γ+1)2δ2
i σ 2

j . (24)

But from (10),

exp{(γ+1)μ0} = ω̄(γ + 1)κγ

h exp−0.5δh (γ+1)2σ 2
j

r̂ γ+1
j

, (25)

41 From (15), and footnote 22, this alters the cost of risk to workers and hence the benefits of matching.
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TABLE 5 Original and Generated Contracts with Constant m̃u for the Month of May 2006

Variance σ 2
j Original Contract r j Generated Contract r̂ j

0.25732 0.14000 0.27675
0.21506 0.32000 0.28846
0.10284 0.15000 0.32203
0.069655 0.23000 0.33268
0.068638 0.16000 0.33302
0.057580 0.25000 0.33665
0.056098 0.28000 0.33714
0.042678 0.30000 0.34160
0.041691 0.24000 0.34194
0.039515 0.26000 0.34267
0.033015 0.21000 0.34486
0.028588 0.18000 0.34636
0.026214 0.22000 0.34717
0.017924 0.35000 0.35000

which depends on the piece rate r̂ j . Combining with (24) gives

Vi, j

(
r̃ j ; r̂ j , μ j , σ

2
j

) = 1

δi

[(
r̃ j

r̂ j

)(γ+1)

ω̄

(
κh

κi

)γ

exp0.5(γ+1)2σ 2
j (δi −δh )

]δi

. (26)

� Matching with two available blocks. Now, consider a planting day for which two planting
blocks are available. These are denoted H and L , with σ 2

H > σ 2
L . Let r̂H and r̂L denote the piece

rates the firm would pay on these plots at μ0. If the firm instead paid r̃L on plot L and allowed
workers to choose the plot on which they plant, workers for whom

Vi,L

(
r̃L ; r̂L, μ0, σ

2
L

)
> Vi,H

(
rH ; rH , μ0, σ

2
H

)
(27)

would choose to plant on plot L . With two blocks available, this is equivalent to

(
r̃L

r̂L

)(γ+1)

exp0.5(γ+1)2σ 2
L (δi −δh ) > exp0.5(γ+1)2σ 2

H (δi −δh )

or

(
r̃L

r̂L

)(γ+1)

> exp0.5(γ+1)2(δi −δh )(σ 2
H −σ 2

L ) . (28)

The potential gains to matching can be seen from (28). The right-hand side of (28) is less
than one if δi < δh . Hence, the firm can reduce the piece rate paid to these workers on block L ,
r̃L , whereas increasing their utility vis-à-vis plot H . Notice that these gains can only be realized
if workers are heterogeneous with respect to risk preferences and risk is important—otherwise,
(28) is only satisfied if r̃L > r̂L , increasing costs for the firm. Of course, whether or not actual
gains are realized will depend on the change in behavior of the workers who self-select onto plot
L . As the piece rate changes, their effort levels will change, affecting firm profits. We now turn
to calculating the effect on profits.

Solving (28) for δi gives the set 
(r̃L) of workers who will choose to plant on plot L as a
function of r̃L :


(r̃L) = {δi : δi < δ∗(r̃L)}, (29)
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where the threshold value δ∗(r̃L) is given by42

δ∗(r̃L) = δh + 2(ln(r̃L) − ln(r̂L))

(γ + 1)(σ 2
H − σ 2

L )
. (30)

The gains from matching are calculated by comparing the firm’s expected daily profits
that result from allowing workers to sort across a given high-variance block H and the low-
variance block L .43 We denote these profits πm

t,H,L . We then calculate the profits from randomly
allocating workers across these two blocks, denoted π nm

t,H,L . We denote the expected profit increase
to matching workers between these two blocks πt,H,L .

To illustrate, consider the two blocks used in Section 6 to estimate the costs of risk. The
piece rates paid on these blocks are rH = 0.14 and rL = 0.35. Note, rH and rL both satisfy (10),
giving daily profits for worker i on block j equal to

π nm
i, j = (Pj − r j )

r j

ω̄(γ + 1)

(
κh

κi

)γ

exp0.5(γ+1)2σ 2
j (1−δh ), j ∈ H, L.

To calculate the profits from not matching workers, we randomly allocate workers to block
H and block L . Profits are then given by

π nm
t,H,L =

∑
i∈H

π nm
i,H +

∑
i∈L

π nm
i,L , (31)

where i ∈ H denotes the set of workers who are randomly allocated to plant on block H and
i ∈ L denotes the set of workers who are randomly allocated to plant on block L .

Under matching, the firm chooses r̃L to maximize

πm
t,H,L =

∑
δi ∈
(r̃L )

(PL − r̃L)
r̃ γ

L

r̂ (γ+1)
L

ω̄(γ + 1)

(
κh

κi

)γ

exp0.5(γ+1)2σ 2
L (1−δh )

+
∑

δi /∈
(r̃L )

(PH − rH )

rH

ω̄(γ + 1)

(
κh

κi

)γ

exp0.5(γ+1)2σ 2
H (1−δh ) . (32)

The increase in expected profit from matching between block j and L is then given by

πt,H,L =
(
πm

t,H,L − π nm
t,H,L

)
π nm

t,H,L

. (33)

To calculate profits, we set Pj = 2 × r̂ j . Notice as well, from Section 3,

expa0+a1i +a2t = ω̄t (γ + 1)

(
κh

κi

)γ

,

so profits are identified on each block. Given δ∗(r̃L) and the profits on both blocks, we also need
to use the experimental data on risk preferences for each worker to identify individuals below and
above δ∗(r̃L). Recall that the experiment described in Section 5 identifies for each worker a range
of parameter values for the risk-preference parameter δi . We perform our calculation by choosing
the midpoint of the appropriate interval for each worker.44

� Matching with J available blocks. To generalize to the case where Jt blocks are to be
planted on day t , let r̂ = (r̂1, r̂2, . . . , r̂ Jt ) denote the vector of piece rates on the Jt blocks that

42 Equation (30) can be generalized to solve for workers’ preferred blocks if γ is heterogeneous. Under such
circumstances, (30) can be solved for δ∗ for all planters with a given value of γ . Solving for the matching equilibrium
then requires iterating over different values of γ in the sample for each r̃L .

43 We take as given the observed firm practice of paying the same contract to all workers planting on the same block.
44 Choosing the lower or upper bounds of the intervals provides almost identical results.
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solve (23). Furthermore, let r̃ = (r̃1, r̃2, . . . , r̃ Jt ) denote the vector of piece rates paid on those
blocks. Generalizing (27), define


( j, r̃) = {δi : V (i, j, r̃ j , r̂ j ) > V (i, j ′, r̃ j ′ , r̂ j ′ ) ∀ j ′ �= j} (34)

to be the set of workers, defined by their risk preferences, who prefer block j at piece-rate
vector r̃. Finally, let H denote j : σ 2

j ≥ σ 2
j ′ ∀ j ′ ∈ Jt , the block with the highest variance from

the available Jt blocks, and let r̃H̃ denote the subvector of r̃ that excludes r̃H . The profits from
matching are given by

πm
t,Jt

=
∑
j �=H

{ ∑
δi ∈
( j,r̃)

(Pj − r̃ j )
r̃ γ

j

r̂ (γ+1)
j

ω̄(γ + 1)

(
κh

κi

)γ

exp0.5(γ+1)2σ 2
j (1−δh )

}

+
∑

δi ∈
(H,r̃ )

(PH − rH )

rH

ω̄(γ + 1)

(
κh

κi

)γ

exp0.5(γ+1)2σ 2
H (1−δh ) . (35)

Under matching, the firm chooses r̃H̃ to maximize (35).
The profits from not matching are given by

π nm
t,Jt

=
Jt∑

j=1

{∑
i∈ j

π nm
i, j

}
, (36)

where

π nm
i, j = (Pj − r j )

r j

ω̄(γ + 1)

(
κh

κi

)γ

exp0.5(γ+1)2σ 2
j (1−δh ) .

The percentage gain from matching on day t is then given by

πt,Jt = (πm
t,Jt

− π nm
t,Jt

)

π nm
t,Jt

, (37)

and the gains to matching over a period of T planting days are given by the average of the daily
gains,

T∑
t=1

1

T
πt,Jt . (38)

� Calculating the gains to matching. To calculate the profit gain to matching within the
firm, we calculate (37) across different planting days throughout the planting season, taking the
available piece rates as given on each day. As such, we reproduce the actual distribution of piece
rates that are available for matching workers within the firm on different planting days. In practice,
the blocks on which the planters work are grouped together based on geographic location. These
blocks are all accessible from a common site (the camp or the hotel at which the planters are
staying). We consider a planting day to be a date on which planting occurred at one or more piece
rates within one of these geographic regions. This ensures that matching was geographically
possible across piece rates (the different blocks were accessible to the planters). It also renders the
number of planting days greater than the number of separate dates on which work was performed
in the firm.

To calculate the benefits to matching, we used the distribution of piece rates on planting days
from the month of May 2006.45 This distribution is presented in Table 6. Notice that of the 86
planting-contract days during this month, 37 days (43%) featured only one piece rate and hence

45 The month of May is typically the busiest time for planting during the season. The average number of blocks
planted per day in this month was 1.90, compared to 1.71 for the 2006 season.
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TABLE 6 Distribution of Matching Opportunities

Contracts per Day Number of Occurrences Percent

1 37 43.02
2 25 29.07
3 19 22.09
4 5 5.81

FIGURE 5

DISTRIBUTION OF THE BENEFITS TO MATCHING ACROSS ALL BLOCKS PLANTED DURING THE 2006
SEASON
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no matching possibilities. Of the remaining days, 25 (29%) featured two contracts, 19 (22%)
featured three contracts, and 5 (6%) featured four contracts.

For each planting day, we ordered the blocks available according to the block variance σ 2
j . We

then allow the firm to vary r̃H̃ to maximize (35) subject to workers choosing the block on which
they want to work. To complete the maximization problem, we discretized the values of r̃H̃ and
performed a grid search over the discrete alternatives, calculating the profit of each alternative.46

We then calculated (36) resulting from a random allocation of planters across blocks. In all cases,
we assume that all workers are available for all contracts on a given planting day.47

The results are shown graphically in Figure 5. The average increase in profits from matching
is on the order of 2.3%. This is relatively small in economic terms, yet statistically significant:

46 We allowed for 299 different piece rates on each block, ranging between the unconstrained profit-maximizing
piece rate γ /(γ + 1)P and the generated piece rate r̂ j (which satisfies the participation constraint). The number of
replications was chosen based on calculation time and how the number of discrete values affected results. With 299
values for each block, we evaluate the profit function 2993 = 26, 730, 899 iterations for planting days with four piece
rates available. Running the complete program to calculate profits on each planting day in the month of May takes 2 hours
on a Lenovo M90P desktop computer. Simulating confidence intervals using 99 draws of the estimated parameters takes
just over 8 days. Increasing the number of piece-rate values in the grid search to 399 gives no perceptible change in our
results—the average profit increase over all contracts is 2.28% rather than 2.3%—whereas increasing the computing time
to 4 hours and 45 minutes.

47 If certain types of workers were not available on certain days, then the benefits of matching would decrease. In
this sense, we can interpret our estimates as an upper bound to the benefits of matching within this firm.
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FIGURE 6

DISTRIBUTION OF THE VARIANCES ACROSS ALL BLOCKS PLANTED DURING THE 2006 SEASON
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Note: Left and right graphs present results for profitable and unprofitable days, respectively.

the simulated 95% confidence interval is (1.8%, 3.1%).48 This average increase in profits nearly
doubles to 4% if we limit consideration to days in which matching was possible (i.e., days on which
more than one block was planted). What is more, for some planting days, the profit increase from
matching attains 15%. This suggests that matching can have substantial benefits under certain
conditions, although those conditions do not occur very often within this particular firm.

The histogram of percent increases in profits due to matching suggests two broad groups
of planting days: those for which the gains to matching are economically modest (less than 5%)
and those for which the gains to matching are economically more significant (greater than 5%);
we refer to the latter as profitable matching days. To characterize the conditions that lead to
significant gains to matching, we compare the variability in planting conditions (and hence the
opportunities for matching) between profitable and unprofitable planting days. In Figure 6, we
graph the distribution of daily block conditions (the variances on the different blocks planted on a
particular day) that are available for planting on profitable and unprofitable days. The results are
quite striking and accord with intuition: profitable matching days are days for which σ 2

j varied
considerably across the available blocks. For days on which matching led to significant gains in
profit, the variance of σ 2

j across blocks was equal to 0.12, six times higher than for days on which
the gains to matching were modest (for which the variance of σ 2 is .02).

48 The confidence interval is derived by simulation. In particular, we take 99 random draws from the joint distri-
bution of (γ, {κi : i = 1, . . . , N }, {(μ j , σ

2
j ) : j = 1, . . . , J }) and evaluate the matching benefits for each draw. We keep

δi : i = 1, . . . , N fixed throughout, as their distributional properties are unknown. The confidence interval is derived from
the variance of the matching benefits across all draws.
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� Capacity constraints to matching. The estimates provided in the previous section were
generated ignoring capacity constraints, essentially assuming that blocks can accommodate as
many workers as want to plant on them. If blocks have limited capacity, then these estimates may
overstate the benefits of matching. To consider this, we limit the number of workers who can
plant on a given block, on a given day, to the number of planting days available on that block, on
that day. We do so for both the matching solution and the no-matching solution, where workers
are randomly allocated. Given we assume that all workers are available to plant on every day, we
prorate the constraint on a given block as the proportion of planter-days on that block relative
to total number of planter-days for all blocks available on the same day. If blocks j and k were
planted on day t with dj and dk planter-days available, respectively, and if N is the number of
planters in the firm, then n j ≤ C j ≡ (dj/(dj + dk)) × N and nk ≤ Ck ≡ (dk/(dj + dk)) × N are
the constraints imposed on the number of planters allocated to blocks j and k.

Note, because the firm does not change the piece rate on block H , the planters are all willing
to plant on this block. On the other blocks, the firm reduces the piece rate below that which
satisfies the marginal worker’s participation constraint, taking advantage of the fact that workers
who are less risk loving than the marginal worker will still plant on those blocks at reduced piece
rate, as the variance is lower. For blocks j �= H , the piece rate is below the regular piece rate
(which solves the participation constraints by assumption). We therefore never force a worker to
move from block H , as we cannot be sure that his/her participation constraint is satisfied.

To take account of these capacity constraints, we calculate each worker’s preference ordering
over the J available blocks given r̃. We then calculate the number of workers who prefer each
block, n j . If n j > C j (too many workers select block j), then n j − C j of these workers are
randomly chosen to change blocks. If J = 2, these workers are moved to block H . If J = 3,
these workers are moved to their second-choice block, if there is space to accommodate them;
otherwise, they are moved to their third choice. In this way, there can never be an overload (too
many workers) on block j �= H . There can, however, be an overload on block H . If this occurs, we
consider that no matching solution exists under the capacity constraints, and we calculate profits
to be those from random allocation under observed piece rates—there is no gain to matching in
this case. If J = 4, workers are moved to their second, third, and fourth choice, as in the case of
J = 3.

Imposing capacity constraints reduces the firm’s ability to match workers to conditions and
hence reduces the potential profits from matching. Our results are presented in Figure 7. They
suggest that the effects of constraints are economically significant, cutting the average percentage
gains to matching to less than 1% (0.6%). The maximum profit increase is 5%. The benefits to
matching are almost exactly 1% (1.004%) on days when matching was possible.

� The importance of risk preferences. The relatively small benefits to matching within
this firm may be due to labor-market sorting, leading to risk-tolerant workers being attracted
to the firm, or the low frequency to which workers are exposed to high-risk environments. To
investigate the relative importance of labor-market sorting on risk preferences, we shift the
distribution of risk preferences to mimic that found in the Canadian population. We do this by
randomly excluding/replicating workers in each risk class to render the proportion of workers in
that class equal to that of the population.49 We then recalculate the benefits to matching workers
across risk levels observed in the firm given the population distribution of risk preferences. Doing
so increases the benefits to matching within the firm, but only slightly. The distribution of the
returns to matching is presented in Figure 8. Matching would increase profits by 2.67% (4.69%

49 For example, from Table 4, there are that 11% of the firm’s workers (five workers)are in the most risk-loving
class, whereas only 2% of the population are found in that risk class. If 2% of the workers were in this risk class, we would
expect to find one worker. We therefore randomly eliminate four of the five workers we find in that risk class. Similarly,
only 1% of workers are in the most risk-averse class, versus 16% of the population. If 16% of the workers were in this
risk class, we would expect to find seven workers there. We therefore randomly replicate the two workers who are in this
class to add five extra workers.
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FIGURE 7

DISTRIBUTION OF THE CONSTRAINED BENEFITS TO MATCHING ACROSS ALL BLOCKS PLANTED
DURING THE 2006 SEASON
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FIGURE 8

DISTRIBUTION OF THE BENEFITS TO MATCHING ACROSS ALL BLOCKS PLANTED DURING THE 2006
SEASON USING POPULATION RISK PREFERENCES
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if we restrict attention to days when matching is possible). This represents an increase of less
than 1% vis-à-vis the actual distribution of risk preferences in the firm. This suggests that the
minor importance of risk within the firm is caused by the low frequency with which workers are
exposed to high-risk environments; it is not due to sorting on risk preferences.

7. Discussion and conclusions

� We have measured the importance of risk within a firm that pays its workers piece rates.
Our measures are based on the benefits of reducing risk exposure to the firm’s workers. We found
that the willingness to pay to avoid risk varies across workers, reflecting heterogeneity in risk
preferences and worker ability. Overall, the cost or risk is predicted to be small: the measured
willingness to pay averages to only 1% of expected net earnings, even on the riskiest contracts
within the firm. Our results also suggest that the benefits to the firm from matching workers to risk
environments are generally low, increasing profits by 2.3% (4% in situations where matching was
possible). Taking account of congestion problems in allocating workers across different blocks
reduces the estimated returns to matching to 0.6%.

We have investigated two possible explanations for the minor importance of matching within
this firm. First, the workers are (on average) risk tolerant, so that risk is not important to them.
This is consistent with selectivity and sorting in the labor market. Second, the conditions found
within this firm are not conducive to matching. Our results suggest that the second explanation
dominates. Even if the distribution of risk preferences within the firm replicated that found in the
broader population, the benefits of matching would increase by less than one percentage point.

We caution that our results should not be interpreted as showing matching does not matter.
Rather, they show that matching is of little importance within this particular firm. Other firms,
operating in different settings, may have larger returns to matching. Indeed, our results point to
where we should look for profitable opportunities for matching: where the measure of risk across
working conditions is highly variable. Under such conditions, matching can increase profits by as
much as 15% within this firm. Larger gains to matching might be expected in different contexts.
For example, in situations where workers cannot observe production shocks before they choose
their effort level, effort will generally depend on the worker’s risk preferences. This will increase
the variability of output, likely resulting in higher returns to matching. Matching might also bring
more important welfare gains across firms with different risk exposure than within a given firm,
as in the current study. Finally, matching might be more important for managers than for blue-
collar workers. Recent work by Gayle and Miller (2009) shows that risk and risk preferences play
an important role in determining managerial compensation contracts. Calculating the empirical
gains to matching in such settings would be an interesting direction for future research.

Our results also have implications for the study of incentive contracts. It is well known that
real-world contracts rarely resemble their theoretical counterparts (e.g., Stiglitz, 1991). What is
more, observed contracts often do not vary as established theories would suggest (Allen and
Lueck, 1992). Although the effects of heterogeneity and sorting have been recognized within the
context of these debates (Ackerberg and Botticini, 2002), our results point to the importance of
multidimensional heterogeneity and the possible bunching of types within contractual settings. In
such cases, it is not clear that any testable relationship between risk and contracts can be established
ex ante. Further characterization of the implications of multidimensional heterogeneity for optimal
contracts may lead to new and important insights into the relationship between theoretical and
real-world contracts.50

Finally, this article highlights the complementarities between econometrics and experiments
for empirical work in economics. Experiments can provide supplementary information over
parameters not identified by econometric models. They can also provide over-identifying infor-
mation, confirming the estimates of structural parameters that are identified within structural

50 Rochet and Stole (2003) provide an account of the theoretical literature on multidimensional sorting.
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models but may be sensitive to functional form assumptions. In turn, econometrics can provide
information not found in experiments. The cost of risk depends on preferences and risk exposure.
Experiments can provide information on risk preferences, but may have difficulty replicating (or
even identifying) the risk levels that workers face in the actual economy.

Appendix A

This appendix contains the decision sheet for the risk-preference-revealing experiment.

Option A My choice is A Option B My choice is B

Decision 1 $40.00 if chip is 1 $77.00 if chip is 1
$32.00 if chip is 2 to 10 $2.00 if chip is 2 to 10

Decision 2 $40.00 if chip is 1 to 2 $77.00 if chip is 1 to 2
$32.00 if chip is 3 to 10 $2.00 if chip is 3 to 10

Decision 3 $40.00 if chip is 1 to 3 $77.00 if chip is 1 to 3
$32.00 if chip is 4 to 10 $2.00 if chip is 4 to 10

Decision 4 $40.00 if chip is 1 to 4 $77.00 if chip is 1 to 4
$32.00 if chip is 5 to 10 $2.00 if chip is 5 to 10

Decision 5 $40.00 if chip is 1 to 5 $77.00 if chip is 1 to 5
$32.00 if chip is 6 to 10 $2.00 if chip is 6 to 10

Decision 6 $40.00 if chip is 1 to 6 $77.00 if chip is 1 to 6
$32.00 if chip is 7 to 10 $2.00 if chip is 7 to 10

Decision 7 $40.00 if chip is 1 to 7 $77.00 if chip is 1 to 7
$32.00 if chip is 8 to 10 $2.00 if chip is 8 to 10

Decision 8 $40.00 if chip is 1 to 8 $77.00 if chip is 1 to 8
$32.00 if chip is 9 to 10 $2.00 if chip is 9 to 10

Decision 9 $40.00 if chip is 1 to 9 $77.00 if chip is 1 to 9
$32.00 if chip is 10 $2.00 if chip is 10

Decision 10 $40.00 if chip is 1 to 10 $77.00 if chip is 1 to 10

Appendix B

Below we show that the choice of blocks from which to calculate μ̃0 has no effect on our results

Note that the generated contracts ensure workers the same level of expected utility as they get under observed
contracts:

E
[
Ui, j

(
r̂ j , μ0, σ

2
j

)] = 1

δi

[
r̂ γ+1

j

(γ + 1)κγ

i

exp(γ+1)μ0+0.5(γ+1)2σ 2
j δi

]δi

= 1

δi

[
ω̄

(
κh

κi

)γ

exp0.5(γ+1)2(δi −δh )

]δi

= E
[
Ui j

(
r j , μ j , σ

2
j

)]
. (B1)

Similarly, profits are unchanged by the use of the generated contract (as long as the price Pj is twice the piece rate paid to
workers).51 To see this, note that under the observed contracts, expected profits of individual i on block j are given by

E
[
πi j

(
r j , μ j , σ

2
j

)] = (Pj − r j )
r γ

j

κ
γ

i

E[S(γ+1)]

= (Pj − r j )
r γ

j

κ
γ

i

exp(γ+1)μ j +0.5(γ+1)2σ 2
j

= (Pj − r j )

r j

ω̄(γ + 1)

[
κh

κi

]γ

exp0.5(γ+1)2σ 2
j (1−δh ), (B2)

51 We specify the price to be twice the piece rate paid to workers, in accordance with firm practice as revealed
through interviews with firm managers.
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where (B2) follows from the fact that

exp{(γ+1)μ j } = ω̄(γ + 1)κγ

h exp−0.5δh (γ+1)2σ 2
j

r γ+1
j

, (B3)

from (10).
Under the generated contracts, expected profits are given by

E
[
πi j

(
r̂ j , μ0, σ

2
j

)] = (Pj − r̂ j )
r̂ γ

j

κ
γ

i

E
[
S(γ+1)

]

= (Pj − r̂ j )
r̂ γ

j

κ
γ

i

exp(γ+1)μ0+0.5(γ+1)2σ 2
j

= (Pj − r̂ j )

r̂ j

(γ + 1)

[
κh

κi

]γ

exp0.5(γ+1)2σ 2
j (1−δh ) (B4)

= E
[
πi j

(
r j , μ j , σ

2
j

)]
, (B5)

where (B4) follows from the fact that

exp{(γ+1)μ0} = ω̄(γ + 1)κγ

h exp−0.5δh (γ+1)2σ 2
j

r̂ γ+1
j

, (B6)

from (10).
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