help hte

Title

hte — Heterogeneous Treatment Effect Analysis

Syntax

 hte depvar1 [depvar2 ... =] treatvar indepvars [if] [in] [weight] [, options]

 hte graph [, level(#) graph_options]

options Description

Main

 alpha(#) set significance level for balancing tests
 pscore_options options as described in help pscore (except level())
 join(list) merge specified strata
 autojoin(#) merge small strata at low end or high end
 by(groupvar) repeat analyses for groups defined by groupvar
 separate construct propensity score strata separately for each by-group
 controls(list) control variables for within-strata models
 estcom(command) set estimation command for within strata models; default is regress
 estopts(options) options to be applied to within-strata models
 nosily display output from pscore and individual models
 level(#) set confidence level; default is level(95)
 listwise use listwise deletion to handle missing values
 casewise synonym for listwise

Graph

 nograph suppress graph
 outcomes(numlist) display results for specified outcomes
 marker_options change look of markers
 lineopts(options) change look of fitted lines
 ciopts(options) change look of confidence intervals
 noci suppress confidence intervals
 addplot(plot) add other plots to the generated graph
 twoway_options any options other than by() documented in [G] twoway_options

fweights, iweights, and pweights are allowed; see help weight.

Description

hte applies pscore (Becker and Ichino 2002) to construct balanced propensity score strata
and, within each stratum, estimates the average treatment effect. hte then tests for
linear trend in treatment effects using variance-weighted least squares. The
stratum-specific treatment effects and the estimated linear trend are displayed in a
twoway graph.
See Brand and Xie (2010) for an application of this procedure.

`hte` specified without arguments redisplays the results from a previous `hte` call (without graph).

`hte graph` redraws the graph based on the results from a previous `hte` call.

Dependencies

`hte` requires `pscore` by Becker and Ichino (2002) to be installed on the system. Type

```
. net sj 5-3 st0026 2
```

followed by

```
. net install st0026 2
```

to install the program.

Options

Main

alpha(#) sets the significance level for `pscore`'s tests of the balancing property. The default is `alpha(0.01)`.

`pscore options` are any options as described in help `pscore`, except `level()`.

join(list) causes the specified strata to be merged together for the treatment effect analysis. The syntax for `list` is

```
numlist [, numlist ...]
```

where `numlist` is a list of consecutive integers that identify the strata to be merged. For example, type `join(1 2)` to merge the first and second stratum. Multiple (disjunctive) `numlist`s may be specified, separated by a comma, in which case multiple merges are applied. After merging, the strata will be renumbered.

autojoin[(#)] causes small strata at the low and high end of the propensity score to be merged with subsequent or precedent strata, respectively, so that the number of observations is at least `#` for both the treated and the untreated (`#` defaults to 10). Only one of `join()` and `autojoin()` may be specified.

by(groupvar) specifies that the analysis be repeated for each group defined by the values of `groupvar`. The results are plotted in a single graph for all by-groups. Common propensity score strata are used for all groups unless the `separate` option is specified.

separate causes the construction of propensity score strata to be repeated for each by-group. The default is to use common strata, that is, to construct the strata once, based on the whole sample including all groups. `separate` has an effect only if `by()` is
specified.

controls(clist) specifies control variables to be included in the models used to estimate the within-strata treatment effects. *clist* may be a standard *varlist*, in which case the specified variables are included in each within-strata model. Alternatively, use the following syntax to specify strata-specific sets:

```
[varlist] [numlist1: varlist1] [numlist2: varlist2] [...]
```

varlist applies to all strata, *varlist1* applies to the strata specified in *numlist1*, etc.

estcom(command) sets the command used to estimate the within strata treatment effects. The default is *regress*.

estopts(options) are options to be applied to the models used to estimate the within-strata treatment effects. The options are as described in help *regress* (or as in help *command* where, *command* is the command specified via the *estcom()* option).

noisily displays the output from *pscore* and the treatment effect models. *pscore*'s *detail* option implies *noisily*.

level(#)* sets the confidence level, as a percentage, for confidence intervals. The default is *level(95)* or as set by *set level*.

listwise handles missing values through listwise deletion, meaning that an observation is excluded from all computations if any of the specified variables is missing for that observation. By default, *hte* uses all available observations to compute the propensity strata without regard to whether values for the outcome variables (the *depvars*) or the variables specified in *controls()* are missing.

casewise is a synonym for *listwise*.

nograph suppresses the graph.

outcomes(numlist) causes results to be plotted for the specified outcomes only. Use this option to select results in case of multiple outcome variables or *by()*-groups. Use numbers 1, 2, 3, etc. to refer to the different outcomes. By-groups are ordered within variables if both multiple outcome variables and the *by()* option are specified. That is, number 1 refers to *depvar1* and the first by-group, number 2 refers to *depvar1* and the second by-group, etc.

marker_options affect the rendition of the plotted markers, including their shape, size, color, and outline; see [G] marker_options. In case of multiple outcomes you can usually specify lists of elements to be applied to the different outcomes. For example, type *msymbol(D T)* to use diamonds for the first outcome and triangles for the second outcome.

lineopts(cline_options) affects the rendition of the plotted lines; see [G] cline_options. In case of multiple outcomes you can usually specify lists of elements to be applied to the different outcomes. For example, type *lineopts(lcolor(blue red))* to use blue
line color for the first outcome and red line color for the second outcome.

ciopts(options) affects the rendition of the capped confidence spikes for the within strata treatment effects; see \[G\] graph twoway rcap.

oci suppresses the confidence intervals for the within strata treatment effects. Confidence intervals are only displayed on plots containing a single outcome.

addplot(plot) provides a way to add other plots to the generated graph; see \[G\] addplot_option.

twoway_options are any options other than by() documented in \[G\] twoway_options.

Examples

Treatment effect of college on wages:

. sysuse nlsw88
. generate sq_exp = ttl_exp^2
. hte wage collgrad ttl_exp sq_exp tenure south smma

Add control variables to within strata treatment effect estimation:

. hte wage collgrad ttl_exp sq_exp tenure south smma, control(ttl_exp sq_exp)

Separate results by union:

. hte wage collgrad ttl_exp sq_exp tenure south smma, by(union)

Redraw graph for second group (union=1):

. hte_graph, outcome(2)

Saved results

hte saves the following in e():

Scalars

 e(N) number of observations
 e(neq) number of equations (outcomes)

Macros

 e(cmd) hte
 e(estcom) estimation command as specified by estcom()
 e(depvar) name(s) of dependent variable(s)
 e(treatvar) name of treatment variable
 e(indepvars) name(s) of independent variables
 e(controls) expanded controls option
 e(trend) note about linear fit
 e(byvar) name of by() variable
 e(depvar#) outcome #: name of dependent variable
 e(by#) outcome #: by-group
\textbf{e(trend#)} outcome #: note about linear fit
\textbf{e(wtype)} weight type
\textbf{e(wexp)} weight expression
\textbf{e(properties)} b

\textbf{Matrices}
\textbf{e(b)} results vector
\textbf{e(se)} standard errors
\textbf{e(obs)} number of observations per stratum
\textbf{e(block)} strata ranks
\textbf{e(lfit)} linear fit of treatment effect by strata rank

\textbf{Functions}
\textbf{e(sample)} estimation sample

\textbf{References}

\textbf{Authors}
Ben Jann, ETH Zurich, jannb@ethz.ch

Jennie E. Brand, University of Calofornia - Los Angeles, brand@soc.ucla.edu

Yu Xie, University of Michigan, yuxie@isr.umich.edu

Thanks for citing this software as follows:

\textbf{Also see}

Online: help for \texttt{regress}, \texttt{vwls}; \texttt{pscore} (if installed)